
sc2 Hardware Library Reference Manual

Jan Frigo
Los Alamos National Laboratory

MSD440
Los Alamos, NM 87545

jfrigo@lanl.gov

1

Contents

1. Introduction 3
1.1. Scope of this Reference Manual . 3

2. Streams-C Hardware Library Components 3

3. Functional Streams-C Hardware Library Description 4
3.1. Process Component . 4
3.2. Stream Components . 4
3.3. Signal and Parameter Components . 4

4. Memory Interfaces 4
4.1. External Memory . 4
4.2. Block RAM . 6

5. Using sc2 9
5.1. Tools Required . 9
5.2. VHDL simulation . 9
5.3. VHDL synthesis . 10
5.4. Hardware bit stream generation . 11

6. Hardware Implementation Notes 11

7. Examples 12

8. Retarget Hardware Notes 13

9. Hardware-Limitations 13

10. Style Issues 14
10.1. Optimization Hints . 14
10.2. Simulation vs. Synthesis . 14

List of Figures

1 Hardware Process Component . 5
2 Hardware Streams Component . 5
3 Streams-C External Memory Interface . 6
4 Streams-C External Memory Types . 7
5 Streams-C Block RAM Types . 7
6 Streams-C Block RAM Memory Interface . 8
7 Streams-C Dual Port Block RAM Memory Interface . 8
8 Example Architecture File . 12
9 Hardware Implementation of Streams-C Data Types . 14

1. Introduction

sc2 is a new implementation of the Streams-C language and compiler. The Streams-C programming model is that of
communicating processes. A system consists of a collection of processes that communicate using streams and signals.
Processes can run either in software on conventional processors (SP) or in hardware on FPGA processors (HP). The sc2
compiler is used to compile FPGA processes in hardware. The compiler translates a subset of C into Register-Transfer-Level
(RTL) VHDL that is synthesizable on FPGAs. The sc2 compiler synthesizes hardware circuits for one or more FPGAs
as well as a set of communicating processes on conventional processors. The language extensions allow pipelined stream
computation, so that the generated hardware/software is capable of pipelining a computation across multiple FPGAs and the
conventional processor.

Our programming model is targeted at stream-oriented FPGA applications. Characteristics of stream-oriented computing
include high-data-rate flow of one or more data sources, fixed size, small stream payload (one byte to one word), compute-
intensive operations, usually low precision fixed point on the data stream, access to small local memories holding coefficients
and other constants, and occasional synchronization between computational phases.

This sc2 release provides hardware libraries for the Annapolis Micro Systems (AMS) Firebird board, which contains one
Xilinx Virtex-E FPGA on a 64-bit PCI bus. This manual describes the Streams-C hardware library used to facilitate the
hardware interface between the Streams-C hardware processes and the target hardware board. It describes how to compile a
VHDL simulation of the hardware processes and how to generate an executable (bit stream) for the hardware.

1.1. Scope of this Reference Manual

The purpose of this reference manual is to enable the user to generate a bit stream for hardware and describe the hardware
interface between the sc2 generated hardware processes and the AMS Firebird board. It is assumed the user is familiar with
VHDL or other hardware description languages.

2. Streams-C Hardware Library Components

� Hardware Streams Components - high bandwidth synchronous communications

StrmFifoWrite - software to hardware fifo module

StrmFifoRead - hardware to software fifo module

StrmIntraRead - hardware to hardware streams fifo module

StrmIntraWrite - hardware to hardware streams fifo module

Fifo16 - internal fifo used in the stream fifo modules.

Fifo32 - internal fifo used in the stream fifo modules.

Fifo64 - internal fifo used in the stream fifo modules.

� Hardware Signal Components - low bandwidth asynchronous communications

Sig Recv - software to hardware process signal receive

Sig Send - hardware to software process signal send

� External Memory Component - 32-bit and 64-bit memories

Sc Mem - interface from hardware process to the 64 bit memories

Sc Mem4 - interface from hardware process to the 32-bit external memory

(I) On our Firebird boards (Annapolis MicroSystems Firebird board pn# 12676-0000 Rev A) we have experienced loss
of data integrity when more than 500k words are read/written to external 32-bit memory, mem 4.

� Block Ram Components - block ram memory for all Streams-C data types

Sc Bram - block rams connected to hardware processes

Sc Dpram - 64-bit by 256 deep dual port ram VHDL module. One port is connected to a software process via the LAD
bus and the other to a hardware process.

� Pipeline Control Components

Indefinite - controls pipeline for indefinite loops (while)

Definite - controls pipeline for definite loops (for)

3. Functional Streams-C Hardware Library Description

3.1. Process Component

The process module has two main components, a datapath process and a sequencer. The datapath process entity consists of
a datapath entity and a pipeline control entity (if a while or for loop is pipelined within the process). The sequencer is a state
machine for sequencing through the instruction set of the process module. If a stream, signal, external memory, or blockram
is used in the process, the signal interface for these components is included on the process module’s port. See figure 1.

3.2. Stream Components

The hardware stream component is used for high bandwidth, synchronous communication between the processes. These
are parameterized modules with respect to data register width and fifo depth. Data width can be any Streams-C data types.
The fifo depths currently implemented are 16, 32, and 64. The modules have separate Data, Enable and Ready signals as
shown in figure 2 the Enable is an input which means the data on the input or output port is valid. The Ready is an output
signal indicating the module is ready to receive data.

(I) All the Streams-C data types are supported in the hardware library and can be used for hardware-to-hardware streams or
signal connections. For hardware-to-software streams connections, 32-bit and 64-bit data types are supported. For hardware-
to-software signal connections, data types less than or equal to 64-bits are supported.

3.3. Signal and Parameter Components

The hardware signal component is used for low bandwidth, asynchronous coordination or flow control between processes.
Signals are parameterizable with respect to data width. The convention for Enable, Ready, and Data is shown in figure 2. The
Enable is an input to the module, SigSend, which means the data on the input port is valid. The Ready is an output signal
indicating the module, SigRecv, has valid data on the output port.

The hardware parameter component is used for passing a variable between processes and to initiate a hardware process.
Parameters are parameterizable with respect to data width. The modules have separate Data and Enable signals. The Enable
is an output that means the data on the output port is valid. A hardware parameter is implemented as an input signal by the
sc2 compiler.

4. Memory Interfaces

4.1. External Memory

When Memory is invoked in a hardware process, if a pragma does not exist to indicate a memory type, the compiler
default is 64-bit external memory (Mem 0). When memory is used, the ports for address, data, and enables - MAR, MDR IN,
MDR OUT, RD EN, WR EN respectivley appear on the hardware process entity. They are connected through the hardware
streams library to the Firebird board. The hardware processes and streams components for external memory, SC Mem (64-
bit memories), SC Mem4 (32-bit memory) connect to the Annapolis hardware with a Mem64 Mux Priority IF component.
This Mem64 Mux allows multiple connections to external memory - one to connect to the LAD bus, allowing memory
to be loaded from the host, and one or more as needed to connect to hardware processes. The Mem64 Mux Priority IF
component connects to the LAD64 Mem64 Bridge component which facilitates loading to external memory via the LAD
bus/PCI bus. Dual port rams (64-bit x 256 words deep) are contained within the LAD64 Mem64 Bridge component (each
Bridge component uses 2 blocks of the Virtex Block RAM). The LAD64 Mux IF is the mux interface to the LAD bus which
connects to the PCI controller and the host as shown in figure 3. The 32-bit external memory, mem4, uses a separate set of
Annapolis components - SC Mem4, Mem32 Mux Priority IF, LAD64 Mem32 Bridge, LAD64 Mux IF. Figure 4 describes
the external memory types. Also reference /streamsc/apps/arch/Firebird.def

DataPath Component

Instruction

Sequencer Component

DataData
from
Stream Writer

to
Stream ReaderDataPath

Pipeline Control

Instructions

External Memory or Block RAM

Process Component

Figure 1. Hardware Process Component

Ready

Data

Ready

Enable

Data

Enable

Component
Stream Writer Stream Reader

Component

Producer Process Comsumer Process

Figure 2. Hardware Streams Component

External Memory
SC_Mem

Process Component

Streams−C Hardware

Mem 3

Mem 2

Mem 1

Mem 0

Mem 4

− 64−bit

External Memory − 32 bit

Components

Mem64_Mux_Priority_IF

LAD64_Mem64_BridgeLAD64_Mux_IF

Host
Load/Unload

LAD Bus

Annapolis Firebird Board Hardware
Components

Figure 3. Streams-C External Memory Interface

Note: The Streams-C examples tested use a LAD bus speed of 66 MHz per the Annapolis PCI controller version 2.8. The
LAD bus is adjustable to either 33MHz or 66MHz with PCI controller version 3.0.

4.2. Block RAM

For local data storage, the Streams-C hardware libraries allow the user to connect to block RAM with a stream or a host
software process. See figures 6 and 7 for the Streams-C hardware implementation of block RAM.

Streams-C uses a pragma statement for selection of a block RAM type. Figure 5 shows the types of block RAM the
Streams-C hardware library provides. (These type definitions are located in /streamsc/apps/arch/Firebird.def) The pragma
statement for a block ram type, B K , of size 64-bit x 256 is shown below where A is the name of the array in the user
program and the maximum size of A is 256. A read from block RAM can be placed in a local variable or in an output stream.
These statements are identical to those used for external memory. A write and read with respect to block RAM is equivalent
to the following C statements:

sc_uint32 A[256];
#pragma SC memory B_K_0 A
data = sc_stream_read(input_stream);
A[i] = data; //write data to block ram
data = A[i]; //read from block ram and place in a variable, data
for(i=i-1; i>=0; i--)

sc_stream_write(output_stream, A[i]);//read from block ram and place in output_stream

The Sc Dpram (64-bit x 256), hardware streams library component provides data transfer from the host to block RAM and
vise versa. This library component uses dual ported RAM with one port connected via the LAD bus to the host and the other
port connected to the hardware process port. For an example of how to load and unload block RAM from the host software
process, reference the streamsc/apps/bram1 example.

type width (bits) size
mem 0 64 1000000
mem 1 64 1000000
mem 2 64 1000000
mem 3 64 1000000
mem 4 32 500000

Figure 4. Streams-C External Memory Types

Single Port type width (bits) size
B A 8 128
B B 8 256
B C 8 512
B D 16 128
B E 16 256
B F 16 512
B G 32 128
B H 32 256
B I 32 512
B J 64 128
B K 64 256
B L 64 512
B M 1 4096
B N 2 2048
B O 4 1024

Dual Port type width (bits) size
DP 2 64 256

Figure 5. Streams-C Block RAM Types

Streams-C expresses memory latency of a read(load) as the delay after the read is issued, until the data is available on the
port’s data-register. For example, a one-cycle latency means the data is available the cycle after the read is issued:

Latency one:
tick 1 - set mar and enable bit
tick 2 - copy mdr into user register.
With this definition, latency is always at least one. For the user who wishes to define a new hardware target board,

read(load) latency is the delay required for the data to be available in the port’s data-register. For the AMS Firebird board, an
external memory write executes in one cycle, a read executes in 7 cycles. A memory optimization currently in the compiler
stalls the datapath process when a read(load) is in progress. Thus, the latency is 1 cycle for external memory read (load) in
the Firebird.def file. The Virtex-E chip executes a write and a read in one cycle using block RAM. The output from block
ram is registered so the read latency is currently two cycles. See /streamsc/apps/arch/Firebird mem.def for definitions of load
and store latencies.

(I) The first column of the streamsc/apps/arch/Firebird.def file defines the number of types that are allocated. This number
must be greater than one. For example,

1 BLOCK RAM1 Memory B A size 128
is an erroneous statement because the name, B A , causes a syntax error in gen vhdl when only 1 block ram of type B A

is allocated in the Firebird.def file. The correct statement is
2 BLOCK RAM1 Memory B A size 128

Process Component

SC_BRAM

Streams I/O

Streams−C Hardware Components

LAD Bus

8 bit x 128

8 bit x 512

8 bit x 256

16 bit x 128

16 bit x 256

16 bit x 512

32 bit x 128

32 bit x 256

32 bit x 512

64 bit x 128

64 bit x 256

64 bit x 512

1 bit x 4096

Single Port Block RAM Memory

4 bit x 1024

2 bit x 2048

Available Sizes SP RAM

Figure 6. Streams-C Block RAM Memory Interface

Host
Load/Unload

LAD Bus

LAD64_Mux_IF

Annapolis Firebird Board Hardware
Components

Block RAM MemoryLAD64_Mux_BlockRAM64

Process Component

Components
Streams−C Hardware

64bit x 256

Figure 7. Streams-C Dual Port Block RAM Memory Interface

5. Using sc2

The generated VHDL command, ”make filename all.vhd” generates the following VHDL output files: filename all.vhd,
filename arch.vhd. The filename all.vhd file contains the generated VHDL for the hardware processes which consists of a
datapath, sequencer, and indefinite or definite hardware library component (if a for or while loop exists) for each hardware
process defined in the Streams-C program, filename.sc The architecture file, filename arch.vhd, uses the Streams-C hardware
library to connect the hardware processes and any external memory or block ram to the target hardware board. This file is
specific to AMS Firebird board, but can be modified to target a user defined board. (see section 8).

The following sections describe how to compile a VHDL simulation using ModelSim PE 5.5e, how to compile the VHDL
project files for synthesis, and how to generate a hardware bit stream.

5.1. Tools Required

Modelsim PE 5.5e
Xilinx Core Gen 4.1i
Xilinx 5.2i Tools
Synplify 7.1.1
Annapolis VDHL version 3.2
Annapolis host API, version 5.0.0

5.2. VHDL simulation

� Generate the Xilinx Core Libraries

Prior to compiling for Modelsim the Xilinx core library must be generated using Xilinx Core Gen 4.1i tool. How
do I compile Xilinx Core Libraries on Modelsim? Go to the Xilinx website, Technical Answer Database: 8066 and
Technical Answer Database: 2561

http://support.xilinx.com/xlnx/xil ans display.jsp?iLanguageID=1&iCountryID=1&getPagePath=8066

http://support.xilinx.com/xlnx/xil ans display.jsp?iLanguageID=1&iCountryID=1&getPagePath=2561

Read these two Xilinx Techincal Answers carefully. Briefly, the compilation involves setting the correct paths to the
library, setting some environment variables and compiling a vcom.do file. The compilation generates the behavioral
models for the Xilinx Cores used with the Modelsim simulator. The /streamsc/vhdl lib/sc xilinx/ directory includes
the vcom.do file needed to generate the libraries. Be sure you are using Xilinx Core Gen 4.1i.

Note: If you are currently a Xilinx technology user, please contact the author for the pre-compiled Xilinx core libraries
and the streamsc/vhdl lib/sc xilinx/ directory that contains the hardware library cores.

� Set Library and Project Paths

Once the core libraries are compiled, edit the mti vcom.do file to set paths to the Xilinx Core libraries, Annapolis
hardware libraries, Streams-C hardware library, and your project directory. Make sure you have the Annapolis Board
VHDL models installed in a local directory.

set MODEL TECH ”D:/ProgramFiles/modeltech”

set ANNAPOLIS BASE ”D:/Annapolis”

set PROJECT BASE ”F:/Firebird/strm/project”

set SC LIBRARY BASE ”F:/streamsc/vhdl lib”

– Xilinx Logiblox support for RAM blocks

vmap xilinxcorelib ”d:/xilinx/vhdl/src/XilinxCoreLib/xilinxcorelib”

Place the Xilinx .mif files located in streamsc/vhdl lib/sc xilinx/sim in your PROJECT BASE directory.

� Edit your Project filename

vcom -93 -explicit -work PE0 Lib $PROJECT BASE/filename all.vhd

vcom -93 -explicit -work PE0 Lib $PROJECT BASE/filename arch.vhd

� Create your Host VHDL program

There are some example host programs and system configuration files in streamsc/apps/app name/sim. These will
show how to simulate a write/read to/from streams, signals, parameters, external memory and block ram for Modelsim
PE. Construct a host program named, host filename arch.vhd, and edit the mti vcom.do file line to include it in the
simulation.

Edit the system cfg.vhd file to include the proper host architecture, Streams-C architecture configuration and external
memory models.

vcom -93 -explicit -work system $PROJECT BASE/host filename arch.vhd

vcom -93 -explicit -work system $PROJECT BASE/system cfg.vhd

� Compile - Annapolis board libraries, Streams-C hardware libraries and Streams-C generated project files

mti vcom.do

Note: The following Warnings occur during modelsim compilation because the behavioral cores are not bound to the
component until the design is loaded in the next step.
WARNING[1]: F:/Firebird/vhdl lib/fifo16.vhd(110): No default binding for component: ”distram16x1”. (No entity named ”distram16x1” was found)

WARNING[1]: F:/Firebird/vhdl lib/fifo16.vhd(110): No default binding for component: ”distram16x2”. (No entity named ”distram16x2” was found)

etc...

� Load system configuration

Once your project has compiled, go to the ModelSim System library and load system cfg, the top level configuration
module.

Note: The Annapolis libraries only need to be compliled once for each project directory, so after a successful compile
comment out the line #do $FIREBIRD PCI BASE/vhdl/system vcom.do

5.3. VHDL synthesis

� Set environment variables and edit project filenames

The VHDL synthesis tool used with Streams-C is Synplify 7.0. The vhdl lib/sc xilinx/syn directory has a synthesis
project file, pe0.prj, which sets all the defaults needed for the synthesis tool. Edit the location of the paths in the pe0.prj
file and edit the names of your project files

–environment variables

set PROJECT BASE ”F:/firebird/strm/project”

set ANNAPOLIS BASE ”D:annapolis”

set SC2 LIB BASE ”F:/streamsc/vhdl lib”

–project files

add file -vhdl -lib PE0 Lib ”$PROJECT BASE/filename all.vhd”

add file -vhdl -lib PE0 Lib ”$PROJECT BASE/filename arch.vhd”

� Set Clock frequency

Set the Clock frequency option to a desired design speed.

set option -frequency 66.000

� Run the pe0.prj project in Synplify to generate a pe0.edf file

5.4. Hardware bit stream generation

� Copy your pe0.edf file to $PROJECT BASE/pnr directory.

where $PROJECT BASE is the location of your project files.

� Set path for Annapolis VHDL models.

The /streamsc/vhdl lib/sc xilinx/pnr directory contains a makefile file. Edit this makefile to set the path for the location
of the Annapolis VHDL models.

set ANNAPOLIS BASE ”D:/Annapolis”

� Place and Route the design

Place the Xilinx .edn files located in streamsc/vhdl lib/sc xilinx/pnr in your PROJECT BASE directory.

Open a cygwin bash shell or command prompt, and cd to your project directory then type, make pe0.x86

where $ANNAPOLIS BASE is the location of the Annapolis VHDL models. This command creates the bit stream
- places and routes the hardware design. This step will take quite a bit of time depending on the size of the project.
Decrease the M CLK user constraints if faster routing time is desired. The user constraints file for place and route,
$ANNAPOLIS BASE/firebird pci/template/syn/pe0/pe0 timing.ucf sets the defaults as follows:

M CLK 10ns

K CLK 15ns

You have created a pe0.x86 binary file, the hardware bit stream. Use this bit stream with the runtime libraries to run
the application on the hardware.

The pe0.par log files from Xilinx reports the maximum frequency achieved during place and route. The user should
set SC MCLK, the desired frequency for running the bit stream on hardware, by setting defines in the filename.sc
program:

/// SOFTWARE INCLUDE

#define SC MCLK 50.0

/// SOFTWARE INCLUDE END

If the defines above are not set by the user, the defaults for SC MCLK and SC UCLK are set to 20 MHz by the
preprocessor. The Streams-C hardware components use the SC MCLK for the user design speed. The SC KCLK for
the LAD Bus speed is set to 66 MHz by the sim rt libraries. SC UCLK is not currently being used.

6. Hardware Implementation Notes

� Be sure to check the version of the simulation, synthesis and place and route tools you are using with Streams-C.
Streams-C was tested and developed with the following CAD tools:

Modelsim PE 5.5e –VHDL simulation

Xilinx Core Gen 4.1.03i –Xilinx behaviour models and cores for VHDL simulation and place and route

Xilinx 5.2i Tools –bit stream, pe0.x86 file generation

Synplify 7.1.1 –net list, pe0.edf file generation

Annapolis VHDL version 3.2 –simulation, synthesis and place and route

Annapolis host API, version 5.0.0 –the sim rt libraries

Note: Be sure to check the log files after place and route to determine the actual speed at which your design was routed.
This value needs to be entered in the filename.sc file as described in section 5.4.

� The user may set SC MCLK, the desired frequency for running the bit stream, by using a software include in the
filename.sc program. A default is set to 20 MHz by the preprocessor if nothing is defined. The Streams-C hardware
components use the SC MCLK for the user design speed. the SC KCLK for the LAD Bus speed is set to 66 MHz by
the sim rt libraries. SC UCLK is not currently being used.

StrmIntraWrite StrmIntraRead

Controller_run Component

Mem 0

PE0_Proc_Run Component

Load/Unload

LAD Bus

LAD64_Mux_IF

Mem64_Mux_Priority_IF

SC_Mem

StrmFIFORead

StrmFIFOWrite

Streams−C Hardware ComponentsAnnapolis Firebird Board
Hardware Components

Host

LAD64_Mux_CRegFile

LAD64_Mux_CRegFile

Figure 8. Example Architecture File

� Consider your application usage of streams and design speed issues. The LAD bus runs at 66 MHz on the Firebird
board, so heavy demands on streams may result in slower overall system speed. Example apps/ppf1 yields a much
faster run-time than apps/ppf.

� Use of multiple block rams in your user hardware processes may cause slower place and route design speeds due to the
automatic placement with the Xilinx tools.

� Contact the author for the Xilinx specific hardware core libraries located at streamsc/vhdl lib/sc xilinx if you have a
valid Xilinx license.

7. Examples

The program strm2.sc has two software processes and two hardware processes. The first software process host1, with
run function host1 run opens an output stream and writes a sequence of integers to the stream. The bound on the loop
(“iterations”) is set by the input argument to the program invocation (eg. the invocation “strm2 sim 400” causes a sequence
of integers from 0 to 399 to be written to the output stream).

The stream sent by host1 goes to a hardware process controller with run function controller run. This process simply
forwards the stream to the next hardware process, pe0 proc run. pe0 proc run has two phases. First it copies its input stream
to memory. Note: a pragma statement is not given for memory, therefore, the default is external 64-bit memory, mem 0.
When the whole stream has been read into memory, it reads back the data in reverse order and writes to its output stream.
The final software process, host2, using run function host2 run, reads the stream from pe0 proc run and prints out the data
received from the stream.

The two hardware processes are generated by the sc2 compiler and placed in the strm2 all.vhd file. The hardware pro-
cesses, controller run, and pe0 proc run are connected through the Hardware Streams Library components to the Annapolis
board models in order to facilitate the hardware interface to the Firebird board. The strm2 arch.vhd file represented in figure
8 contains this “system connectivity”.

The streamsc/vhdl lib directory contains all of the Streams-C hardware library components. See section 3.2 for a descrip-
tion of the hardware library components.

8. Retarget Hardware Notes

This strm2 all.vhd file is designed to be “stand-alone” and can be retargeted to a different user system. The architecture file
and the associated Streams-C hardware library modules for streams, signals, parameters and memory need to be redesigned
for the user system. The Streams-C memory types in the streamsc/apps/arch/Firebird.def and Firebird mem.def files need to
be modified as well.

The process declarations and connects can reflect multiple FPGA’s via the naming convention, PE0, PE1, etc. in the
PE.def file.

9. Hardware-Limitations

� CLB RAMs are not implemented in the Streams-C hardware libraries.

� Do not use external memory in an array of hardware processes. The Streams-C model does not arbitrate external
memory access between multiple hareware processes. Use blockram types (not dual port ram or external memory
types) in arrays of hardware processes.

� Do not use the same external memory (i.e. mem 0) in multiple hardware processes. The Streams-C model does not
arbitrate external memory access between multiple hareware processes.

� Do not place an sc wait() call within a pipelined loop.

� If a numeric value is posted with sc post(), the value must be cast to the same type as the output signal.

� All the Streams-C data types are supported in the hardware library and can be used for hardware-to-hardware streams
or signal connections. For hardware-to-software streams connections, 32-bit and 64-bit data types are supported. For
hardware-to-software signal connections, data types less than or equal to 64-bits are supported.

� Multiplication and casting have been tested. See the sc2 reference manual section 4.0 and /streamsc/apps/mult1 and
mult2 for examples.

� The sc2 compiler can pipeline blocks that contain control flow statements, i.e. if-else statements.

� The sc2 compiler can pipeline the inner-most loop(s) of a nested loop. See example /streamsc/apps/fastfold/fastfold.sc

� Unpipelined loops have not been exhaustively tested.

� For hardware synthesis divide is implemented only for powers of 2.

� The hardware implementation of the modulus intrinsic function, sc mod(), only allows modulo by a power of 2.

� When using the unroll pragma, large unroll factors combined with large loop body may cause the scheduling phase of
the compiler to run out of memory.

� The compiler will automatically pipeline all for and while loop even if a pragma is not used. To remove the always
pipelining option for definite and indefinite loops, omit the -pipeline all flag in streamsc/apps/Makefile

� For hardware synthesis the sc catenate() bit intrinsic function requires unsigned arguments.

� For the hardware synthesis compiler, constant numbers (e.g. 100000) must be explicitly cast for use in bit intrinsic
functions, defines, and assignments, otherwise their default type will be signed int.

� Hardware defines for constants must be sc data types or they must be explicitly cast in each instance they are used.

� For math operations the hardware synthesis compiler implements mixed type operations by casting the unsigned
operand to signed.

� Frequent stalling will sometimes generate an error in unpipelined loops. We recommend use of external memory for
inputting data from a software process to a hardware process (especially when using nested loops) in order to minimize
stalling and improve the timing efficiency of the routed design.

hw-to-hw connections sw-to-hw connections
parameters NA 1 - 64-bit types
signals all types 1 - 64-bit types
streams all types 32-bit, 64-bit types

Figure 9. Hardware Implementation of Streams-C Data Types

� Definite loops are implemented as indefinite loops in the hardware synthesis compiler. Use of multiple external mem-
ories within a pipelined loop can cause a dead-lock stall condition due to design constraints in the indefinite hardware
controller module.

10. Style Issues

10.1. Optimization Hints

� Use functions sc bit insert() and sc bit extract() instead of the shift left or shift right (” ��� ” or ” ��� ”) operators.

� Pointers are not permitted. Indirect reference must be accomplished through array reference.

� If most of the 160 blocks of block RAMs are used for a memory intensive application, the overall timing of the design
may decrease. The place and route tool routes these blocks automatically and timing could be affected.

� Use function sc catenate() to concatenate multiple variables. See example /streamsc/apps/fastfold/fastfold.sc

10.2. Simulation vs. Synthesis

� Occasionally it is useful to write the code in one way for simulation and slightly different for synthesis. The IF SIM
macro is provided for this purpose.

� We have found that C compiler bugs sometimes cause large locally allocated arrays to get corrupted. Thus to circum-
vent the bug in simulation, the array is globally allocated during simulation and locally allocated for synthesis.

� The hardware synthesis compiler implements Streams-C data types for streams, signals and parameter connections per
Figure 9.

